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CONVERSION FACTORS, INCH-POUND TO METRIC (SI) AND
METRIC (SI) TO INCH-POUND UNITS OF MEASUREMENT

Units of measurement used in this report can be converted as follows:

Multi ply By To Obtain

Inch-Pound to Metric (SI)

feet 0.3048 metres

feet per pound (mass)11  0.67196893 metres per kilogram11

feet per second 0.3048 metres per second

inches 0.0254 metres

pounds (force) per 6894.757 pascals
square inch

pounds (mass) 0.4535924 kilograms

pounds (mass) per cubic foot 0.01601846 grams per cubic
centimetre

pounds (mass) per cubic foot 16.01846 kilograms per cubic metre

tons (mass) 907.1847 kilograms

Metric (SI) to Inch-Pound

millimetres 0.03937007 inches
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THE INFLUENCE OF A SHALLOW WATER TABLE ON CRATERING

CHAPTER 1

I NTRODUCT ION

1.1 BACKGROUND

Craters formed by large explosive charges offer important military

potential for creation of barriers to ground vehicles in tactical war-

fare. Small nuclear weapons can produce major crater obstacles. Pre-

dicting the size and shape of such craters can be done with some confi-

dence if the geologic environment is reasonably homogeneous and

isotropic. At present, however, predictions for craters in more real-

istic, layered geologies are more difficult to make with confidence.

One situation of major concern is the prediction of crater shapes and

sizes in a geologic environment with a near-surface water table. This

is especially critical in regard to the possible enhancement or degra-

dation of the obstacle value of such craters due to the effects of the

water table.

Data from previous tests (Table 1.1) indicate a possibility that

craters with drastically different shapes can be formed in a near-

surface water table geology. A conventiQnal crater is bowl-shaped with

an aspect ratio of 1 to 6. Some craters are much wider, however, as

the aspect ratios of up to 20 indicate. (Aspect ratio is defined as

crater diameter divided by crater depth.) This effect may be caused by

liquefaction of the soil around and below the crater, by slope failures

in and around the crater area, or a combination of both phenomena.

Although one of these shallow craters alone may present less of an obsta-

cle to mobility than a conventional crater, the presence of liquefied

soil within and near the crater can seriously retard military mobility

due to the reduced soil shear strength and low bearing capacity. The

water from the near-surface water table, which often feeds postcrater

boils and artesian flows, can contribute to a reduction in military

mobility.

A new awareness of liquefaction, based largely on research in
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earthquake engineering (Reference 1), has caused blast-induced liquefac-

tion to become a subject of increasing military interest in recent years.

Some researchers have postulated that craters produced by nuclear sur-

face bursts on coral sand (Pacific Proving Ground) were affected by

liquefaction because of their unusually wide and shallow shapes. The

possibility exists that explosions from conventional weapons may cause

little blast damage to a structure; but if explosions are in medium-

loose saturated sands, liquefaction may occur and cause foundation fail-

ure or other problems (Reference 2).

1.2 OBJECTIVES

The objectives of this study were to determine the influence of

shallow water tables in soils on cratering and soil stability in the

crater vicinity, and to recommend modifications of existing crater pre-

diction methods in Army weapon employment manuals to account for the

influence of the water table.

1.3 APPROACH

Small-scale explosive cratering tests were conducted to provide

cratering and ground shock data. Explosive charges ranging from 0.25

to 322 pounds Iwere buried at various depths relative to both the ground

surface and the shallow water table surface. Typical crater nomencla-

ture is shown in Figure 1.1.

The program was divided into three phases. Phase 1, involving

0.25 to 16-pound TNT charges, was conducted in mid-1976 in a specially

constructed sand test basin at the WES Big Black River Test Site (BBTS)

and are referred to as the BBTS tests. Phase 2 charges were fired in

natural sandy sites. Phase 2S (S refers to sandbar) was completed in

late 1976 using 4- to 16-pound TNT charges detonated in a natural sand

on a newly exposed Mississippi River sandbar. These are referred to as

A table of factors for converting inch-pound units of measurement to

metric (SI) units and metric (SI) units to inch-pound units is given
on page 5.



the Sandbar tests. Phase 2M (M refers to Martin-Marietta) was a series

of tests conducted in mid-1977 using 25- to 125-pound nitromethane (NM)

charges fired in a natural sand near Orlando, Florida, and are referred

to as the Orlando tests. Phase 3 involved the use of 27- to 322-pound

NM charges at a natural clay/sand layered site at Camp Shelby, Missis-

sippi, in early 1978, and are referred to as the Camp Sfelby tests.

Test variables for each series included charge depth of burst,

water table depth, and soil density, gradation, and degree of satura-

tion below the water table. Measurements were made on each test of

crater dimensions, crater shape, and water content, density, and grada-

tion of soil. On selected tests, measurements were made of pore pres-

sure fluctuations, soil stress above and below the water table, and

degree of soil saturation.

9
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CHAPTER 2

PROCEDURE

2.1 TEST SITES AND TEST CONDITIONS

2.1.1 BBTS Tests

The test basin for the BBTS tests was about 50 feet by 100 feet in

area and 5.5 feet deep, with a sumnp area protected by a gravel dike to

permit control of the water table level in the basin. The sand used in

the basin was a uniform, washed masonry sand emplaced in 6-inch lifts

with each lift compacted with three passes of a D-8 dozer. The grada-

tion of the sand is shown in Figure 2.1. The average dry density,

measured from samples taken by a handheld "mini-Shelby tube," was
3

109 lb/ft .Additional sand properties are listed in Table 2.1. The

highest saturation level measured from the mini-Shelby tube sample tests

was about 85 percent. However, this figure is estimated to be at least

5 percentage points low because of the loss of some water from the

sample in removing it from the ground, since the masonry sand was fairly

coarse and had a high permeability. It is difficult to obtain high

saturation by raising the water level in a dry sand. Entrapped air

keeps the saturation low and requires time to migrate to the surface.

Each of the 38 BBTS tests is listed in Table 2.2 along with the

shot geometry, water table depth, and resultant crater dimensions. The

first twelve shots were fired with no water in the basin to provide a

base upon which to make comparisons of crater sizes. The basin was

flooded and left to stand for about a month to increase saturation.

When testing was resumed, the water level in the basin was gradually

drawn down as the series progressed to give the required variations in

water table depth. Water table depths ranged from 0.0 feet (water at

sand surface) to 1.9 feet.

2. 1.2 Sandbar Tests

The Sandbar tests were conducted on a sandbar of the Mississippi

13



River near Vicksburg, Mississippi. The test area became exposed when

the Mississippi River reached record low levels in September 1976. The

site provided a natural test environment with a degree of saturation

due to about 40 years of submergence. Holes were dug at each ground

zero (GZ) to measure the water table depth. The site had a gentle

topographic relief, and the required range of water table depths could

be easily found.

The sand on the sandbar was uniformly graded, but was somewhat

finer than the test basin sand, as can be seen in Figure 2.1. The

gradation is similar to that of Ottowa sand, but the particles are

rounded. The average dry density measured on the site was about
3

99 lb/ft , with saturation of 99 to 100 percent. Since the sandbar sand

was fairly fine, the permeability was low and water was not lost from

the sample in removing it from the ground, but the density samples were

difficult to obtain becaus;e of the low density. Other properties of

the sandbar sand are listed in Table 2.1.

The 20 shots composing the sandbar tests are listed with charge

geometries, water table coniditions, and resulting crater dimensions in

Table 2.3.

2.1.3 Orlando Tests

Twelve shots were tired near Orlando, Florida, at the test site

furnished under contract by Martin-Marietta Corporation. The explosive

used was NM, which is about 14 percent more efficient (for cratering)

than TNT. TNT charge sizes were thus 14 percent larger than equivalent

NM charges. Water table depths during the test period varied from 5.0

to 6.0 feet. The water table depth was about 2.0 feet when the site

was first inspected, but after waiting about eight months for contract

negotiations to be completed, the water table had dropped to about

5.0 feet because of near-drought conditions in the area. A summary of

the charge geometries and weights and the water table depths for the

Orlando tests is given in Table 2.4.

The material at the Orlando site was a fine sand that had increas-

ingly more fines with increasing depth. The material in the cratered

14
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area, however, tended to be sand or silty sand. Figure 2.1 shows typi-

cal gradation curves for the material within the cratered regions. Fig-

ure 2.2 shows the boring logs taken from each GZ. The terrain was

almost flat, and the logs show a good uniformity throughout the test

area. The sand was in a medium dense state and was highly saturated

below the water table. No tests were run to determine water content

or to directly determine density or saturation because of the proximity

of the site to WES laboratories and the cost involved. However, the

relative density can be easily estimated from penetration test data,

and the saturation level was estimated to approach 100 percent, based

on preliminary seismic tests run in the area, which showed a sonic

velocity of the sand of about 5000 ft/s.

2.1.4 Camp Shelby Tests

The Camp Shelby tests included 23 shots fired on Birch Range at

Camp Shelby, Mississippi. Plastic trash cans were used as charge con-

tainers for the NM explosive, and the maximum length-diameter ratio was

1:4. Charge emplacement techniques are shown in Figure 2.3a. Water

table depths ranged from 1.0 to 3.4 feet. The water table remained

fairly stable throughout the test series, even though testing was tempo-

rarily delayed several times by rain. Data on charge size and geometry

and water table depth are given in Table 2.5, along with crater data.

The test site was a flat area surrounded by rising hills on three

sides and a creek bed on the other. A general view of the site and a

typical explosion are shown in Figure 2.3b. The first 0.5 foot of soil

was dark sandy, silty clay (CL). The soil between 0.5 foot and 3.5 feet

was a light brown, clayey, sandy silt (ML), and below 3.5 feet was a

reddish brown, sandy clay (CL). The top layer was fairly soft below a

light crust; the middle layer, where the water table usually occurred,

was soft to soupy; and the bottom layer was fairly stiff. Table 2.6

contains data on the soils, including the results of vane shear tests.

Water content ranged from 20 to 30 percent and saturation was about

99.9 percent. A partial gradation curve for the lower layer is shown

in Figure 2.1.
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2.2 CRATER MEASUREMENTS

To determine the preshot water table level for each event, a hole

was bored at GZ and the water table depth was measured after an hour or

so when the level stabilized. The apparent crater profiles for each

shot were measured by conventional survey methods along two perpendicu-

lar diameters. Temporary benchmarks were placed preshot well beyond the

crater area along each radial, and a string line was stretched across

the craters to reestablish GZ. Visual observations and photographs were

also made of the craters to document characteristics not visible in the

profiles.

2. 3 SOIL STRESS-PORE PRESSURE
MEASUREMENTS

Measurements of soil stress and pore pressure were made on selected

shots of all parts of the test program except the Camp Shelby tests. A

total of 25 shots was instrumented for both soil stress and pore pres-

sure. Measurements were made at various locations along a radial line

from GZ for each instrumented shot.

Diaphragm-type soil stress gages (SE) developed by WES (Ref er-

ence 7), were emplaced at selected locations and the holes were back-

filled with sand, which was vibrated and compacted to a density as close

to the in situ sand as possible (by visual observation). The SE gage

was also used to measure pore pressures. Each gage used for this pur-

pose was placed in a 2-inch diameter by 3-inch high perforated canister

surrounded by a screen. A sketch of the canister design is shown in

Figure 2.4. The canister held the soil particle pressure away from

the gage, while the screened perforations allowed pore water to flow

freely and encompass the gage. The pore pressure gage system was tested

in water by comparing measured water shock pressures from an underwater

explosion with an adjacent, bare SE gage. The screened canister system

showed no damping of the water shock pressure, nor did it alter the

waveform. The canisters for each cratering test were placed in posi-

tion, covered with water, and backfilled with sand.

16



Table 2.1. Average soil properties for BBTS basin sand
and sandbar sand.a

Basin Sandbar

Sand Sand

Specific gravity 2.65 2.65

Void ratio 0.54 0.64

Dry unit weight, lb/ft 3  109.0 99.0

Water content above water table, percent 8.0 10.0

Water content below water table, percent 16.0 25.0

Wet unit weight above water table, ib/ft 3  118.0 109.0

3Wet unit weight below water table, lb/ft 126.0 124.0

Saturation above water table, percent 50.0 34.0

Saturation below water table, percent 85.0 99.0

a All values are approximate.
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Tahle 2.6. Soil data from charge locations

at Camp Shelby test site.

Vane Shear Sample
Water Content Strength Depth

Shot No. percent psi ft

3-3 24 -- 1.0

3-8 24 1.9 0.5

3-8 21 -- 1.2

3-9 28 -- 0.5

3-9 25 -- 1.5

3-10 38 5.4 1.5

3-11 24 -- 1.5

3-12 25 -- 1.0

3-12 21 -- 2.0

3-13 24 -- 1.5

3-14 22 -- 1.5

3-17 21 7.0 2.0

3-19 26 3.9 0.1

3-19 21 -- 3.0

3-19 29 -- 5.0

3-20 22 -- 1.5

3-20 23 7.0 2.5

3-23 32 2.3 0.5

3-23 14 3.1 1.0

3-23 24 4.3 1.5
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a. Charge emplacement technique.

M06.

b. Test site and explosion.

Figure 2.3 Views of typical Camp Shelby tests.
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1-hole rubber stopper
(SE gage cable comes

out the hole)

0.2-in-thick
metal pipe 0.06-in Mesh 0.18 75-in Per-

Metal forations on
Screen 0.375-in centers

2.0-in ID in 16-gage

metl

--4 0 0

Perforat ions
on Approx. :-Q
0. 75-in I o 0
centers

0 .41.... :00

16-gage Note: SE gage is placed inside a
sheet metal rigid canister. Both screen

bottom plat and perforated metal surround
canister.

Figure 2.4 Sketch of pore pressure canister assembly.
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CHAPTER 3

RESULTS

3.1 CRATER SHAPES AND SIZES

3.1.1 BBTS Tests

The crater dimensions from the BBTS tests are listed in Table 2.2,

anti apparent crater profiles are shown in Appendix A. The scaled crater

dimensions versus scaled charge depth of burial are plotted in Fig-

ure 3.1. The effect of the water table on crater sizes is quite subtle

in these curves. The main result noted from the cratering tests in the

basin was that craters formed without water were larger (both in radius

and depth) than craters formed with a water table at the surface. The

water seemed to give the sand greater cohesion, probably from surface

tension, which caused the craters to be smaller by inhibiting collapse

of the crater walls. The location of the water table did not affect

the crater sizes abruptly as had been the case in some previous tests.

The sand tended simply to behave as either a wet or dry sand, depending

on the proximity of the water table to the surface. The crater shapes

were fairly regular and bowl-shaped, as would normally be predicted

from cratering curves. A typical crater is shown in Figure 3.2.

3.1.2 Sandbar Tests

The crater dimensions from the Phase 2 sandbar tests are listed in

Table 2.3 and apparent crater profiles are shown in Appendix B. Scaled

crater dimensions are plotted versus scaled charge depth in Figure 3.3.

The effect of the water table on crater sizes is much more pronounced

in these results than in those of the Phase I tests. In general, the

presence of a shallow water table increased the crater radii and de-

creased the crater depths, and the changes in these dimensions were

roughly proportional to the proximity of the water table to the ground

surface. In some cases, however, a drastic reduction in depth occurred,

as can be seen in the lower curve of Figure3.3, which is labeled "lique-

fied craters." It is assumed that the cause of the complete collapse
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of these craters is blast-induced liquefaction. The conditions which

govern the formation of these craters are not completely understood,

nor have they been defined to a point which would allow an accurate

prediction of the occurrence of this type of crater in other locations.

A typical liquified crater is shown in Figure 3.2.

Circumferential cracks about 1/2 inch wide and over 1 foot deep

were found at a range of about 3 to 4W 13( W is the charge weight in

pounds) on many of the craters produced on the sandbar. The ground

surface out to the cracks from the edge of the craters was unstable

and tended to slough upon vibration. The ground surface in this area

also had a wet appearance, as though water had been forced to the sur-

face from the saturated zone below the water table.

3.1.3 Orlando Tests

The crater dimensions from the Orlando tests are listed in

Table 2.4 and plotted as scaled dimensions versus depth of burst in

Figure 3.4. Curves in Figure 3.4 reflect standard shape of crater dimen-

sions versus depth of burst data similar to curves for r a and da

with water table in Figure 3.3. Apparent crater profiles are shown in

Appendix C. No effects of the water table are evident in these pro-

files. The water had dropped so low that the charges had to be placed

at a scaled depth of burst (DOB) of about 1.0 ft/lb 13to be deep enough

to interact with the water table. However, by so doing, they were in a

position where they formed the crater by upward ejection rather than by

downward loading and outward flow. The downward loading and outward

flow force caused the shock wave to interact with the water surface

rather than eject it. The sand was also medium dense, which reduced

the possibility of liquefaction in any loading configuration. The

craters were fairly regular and deeply bowl-shaped, and no evidence of

liquefaction was found. Figure 3.5 shows a typical crater from the

tests.

3.1.4 Camp Shelby Tests

The crater dimensions from the Camp Shelby tests are listed in
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Table 2.5 and apparent crater profiles are shown in Appendix D. Scaled

crater dimensions versus scaled DOB data are plotted in Figure 3.6. A

typical crater is shown in Figure 3.7a. The effect of the water table

depth as shown in these figures is not extreme. However, the effect

of soil layering observed at the time of the field event can be seen by

close examination of the crater profiles. In most cases, the outer por-

tion of the crater radius was extended by sloughing of the material

above and in the weak second layer, as can be seen in Figure 3.7b. In

some cases, results of the slumping are clearly evident in the crater

profiles (Appendix D, Shots 3-1 and 3-2). The occurrence of slumping

in other craters is not readily apparent without direct observation of

the craters in the field. The amount of sloughing in this type of situa-

tion depends mainly on the thickness of the weak layer. The radius

seems to be increased by an amount approximately equal to the depth of

the layer, since the slump generally fails along a 45-degree plane.

3.2 SOIL STRESSES AND PORE PRESSURES

Soil stresses and pore pressures were measured on a total of 25

shots: the last 7 shots of the BBTS tests; the last 6 shots of the

Sandbar tests; and all 12 of the Orlando tests. Measurements were made

at a minimum of two horizontal ranges from GZ on each test and at four

ranges on some of the Orlando tests. Three gages were emplaced at each

range: an SE soil stress gage just above the water table elevation, and

an SE soil stress gage adjacent to a pore pressure gage just below the

water table elevation. Typical gage layouts are shown in Figure 3.8.

Typical records for one array are shown in Figure 3.9. Peak

pressure data and pertinent gage data are listed in Tables 3.1, 3.2,

and 3.3 for the BBTS, Sandbar, and Orlando tests, respectively.

Other types of pore pressure measurements were made for various

tests. Piezometer tubes were emplaced along a radial line from GZ for

all the BBTS tests and for two Sandbar tests. Preshot groundwater

levels were recorded and postshot recordings were begun about 2 to

5 minutes after the shot and were continued for about 30 minutes. The

results of these measurements for the BBTS tests are shown in
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Figure 3.10, which is a plot of water level versus range from GZ for

various times after the detonation. The data indicate that the water

level had dropped by the time the piezometer measurements were begun,

and started to rise to its preshot level as time passed.

3.3 SOIL DENSITIES

Preshot and postshot measurements of sand density on the BBTS tests

indicated that the sand emplaced in a fairly dense configuration, with

3Xd = 109 lb/ft , was dilated, or bulked, by the explosions. Bulking

in the GZ area was on the order of 10 percent (that is, the original

density was decreased by about 10 percent.) Bulking in the crater lip

area near a range of about 2WI/3 was about 2 percent. The bulked

sand had negative pore water pressures, resulting in stable crater walls

for a short time after the shot. These negative pore pressures were

sufficient to make the craters appear dry after the shot, even though

they were below the preshot level of the water table.
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Figure 3.1 Scaled crater dimensions versus scaled depth of
burst for BBTS tests. (Data for intermediate
water table depths fall between the two condi-
tions shown.)
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a. Typical BBTS sand basin crater.

.. .... ..

b. Typical liquefied Sandbar crater.

Figure 3.2 Craters from two test series.
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Figure 3.3 Scaled crater dimensions versus scaled depth of burst
for Sandbar tests.
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a. Typical crater. (To right of sign is head of a man

standing in crater.)

1k -i

b. Slough at right edge of crater.

Figure 3.7 Postshot views of Camp Shelby test site.
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Figure 3.9 Typical time histories for one set of gages,
Sandbar tests, Shot 16. (Positive and

negative values are reversed.)
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CHAPTER 4

DISCUSSION

4.1 WATER TABLE EFFECTS ON
CRATERING RESULTS

4.1.1 General Observations

The craters from most of the tests of this program were regular,

bowl shaped, and dry. The Sandbar tests provided a few exceptions,

however, which will be discussed in detail in a following paragraph.

In general, the effect of the near-surface water table was small enough

to indicate that the shot geometry does not affect the crater-forming

shock wave as strongly as was expected.

Previous experience in ground shock studies indicates that in many

geologies, the dry soil above the water table absorbs much of the shockI

energy before it gets to the water table. In dense sands that. are

bulked by the explosion, the water has a tendency to give the sand being

loaded (or sheared) a false (i.e., temporary) strength from surface ten-

sion. Both situations described above existed in the BBTS tests.

The Orlando test site provided a sand medium for testing that had

different properties from those of the BBTS basin. As previously stated,

the water table had dropped considerably during the contract negotia-

tion period. The explosive charges had to be placed deeper (below

I1/ ) than originally desired in order to interact with the water

table (below 1.0W 13). As a result of this deeper burst depth, the

crater was formed more by upward ejection of material instead of down-

ward shock wave interaction with soil and water. The result was a

tendency to form bowl-shaped craters.

The Camp Shelby tests also formed bowl-shaped craters. However,

there was an irregularity in most of these craters caused by the par-

ticular layering system at the site. The craters were widened by

sloughing of the clay layer above the sand layer.

The exceptions for the Sandbar tests were Shots 2S-5, 7, 10, 16,

17, 18, and 19; in Figure 3.3 these are called liquefied craters.
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These craters were shallow and wide, with an untypically flat profile.

It appears that they were flat because material around and below the

crater liquefied during the cratering process. Some of the charges

were detonated relatively deep in relation to the water table; conse-

quently, a bowl-shaped crater must have existed at some time early in

the crater formation process. Since the volume of material between the

final crater is too great to be attributed to fallback, the material

surrounding the transient crater must have flowed back into the void.

A flow of this nature and extent would require a very low shear strength

in the material, thus indicating that it did, in fact, behave in a

liquefied manner.

4.1.2 Definition and Evidence of
Liquefaction

Liquefaction is a phenomenon that occurs when a saturated (or

near-saturated), cohesionless material is dynamically loaded, and pore

pressures build up to a point where pore water, rather than the soil

grains, begins to carry the load. The exact conditions that govern the

occurrence of liquefaction depend on a combination of soil density and

degree of saturation, and grain size, thickness of the soil layer, and

type of loading. Liquefaction is most likely to occur in loose, satu-

rated sands, but can occur in other sands if the loading is repeated

over several cycles (Reference 1).

The wide, flat craters of the Sandbar tests provide a basis for

assuming that liquefaction can be blast induced, i.e., from an impul-

sive load as well as for sustained vibrations (Reference 8). The

craters did not conform to conventional size and shape, but they were

not merely anomalies. Craters from other previous tests have also been

abnormally flat and shallow. These include tests in sand in the

Netherlands (from unreported data), the Pokeholes tests at Ft. Polk,

Louisiana, in layered media with large near-surface sand layers, and

the PPG craters in coral sand (References 5 and 4). The question of

interest here is whether liquefaction caused these craters to be flat.

Optimum conditions for liquefaction existed at the sandbar. The
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grain size was small but not approaching silt. The sand was medium

dense and saturated. These conditions did not all exist at the other

test sites. The BBTS sand was too dense, not saturated, and possibly

too coarse. The Orlando sand was too dry (near the surface) and possi-

bly too dense and too fine. The Camp Shelby site had a sand layer too

thin to be vulnerable because it was confined between the clay layers.

Thus, even though these three test series did not produce flat craters

or other evidence of liquefaction, they did produce contrary evidence

that can be easily observed in retrospect. Other evidence of liquefac-

tion exists in the form of pore pressure and piezometer measurements,

which will be discussed separately.

4.1.3 Piezometer Correlation

Piezometers were emplaced for two sandbar tests similar to those

emplaced for the BBTS tests. The piezometers were pipes with perfora-

tions in the lower 1 foot of their length. They were emplaced on a

radial line from GZ, with wooden dowels resting in the pipes to keep

sand from entering the perforations and filling the pipes. Immediately

after the shots, the dowels were found to have been forced up out of the

pipes. The dowel in the pipe closest to CZ was raised over I foot, and

farther from GZ around 4 inches. The rise of the dowels gives evidence

that long-term excess pore pressures were created by the blast at these

ranges in the Sandbar tests.

4.2 EFFECTIVE STRESS ANALYSIS

4.2.1 Concept

The soil stresses and pore pressures measured on the various shots

can be used to confirm the occurrence of liquefaction during the crater

formations. Effective stress theory dictates the following relation-

ship for the state of stress at a point in a cohesionless material (Ref-

erence 9):

o = ot
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where o t is total stress in thle sand/water mixture, i is pore pres-

sure, and i is effective stress (intergranular stress). Liquefaction

occurs when the pore pressure is increased enough to equal the total

stress, thus permitting the effective stress to drop to zero. The shear

strength of sand is directly proportional to the effective stress. Thus,

if the effective stress goes to zero, the material has no shear strength,

and therefore flows like a fluid.

4.2.2 Comparison with Test Data

This effective stress relationship should hold for field measure-

ments of these parameters made at the same point in the soil. However,

no field measurements were made of effective stress at points below thle

water table since at thle time no developed method existed for measuring

this parameter (a German technique has been developed that uses a fluid

inside a soil stress gage diaphragm and connects the fluid to the pore

water to cancel the pore pressure on the outside of the gage (Reference

2). Even so, the measurements that were made can be used in an effec-

tive stress analysis. The three measurements (i.e., the total stress

both above and below the water table and the pore pressure) made at each

range from GZ were in fairly close proximity. As long as liquefaction

does not occur, the total stress measurement made above the water table

can be used as an approximation of effective stress just below thle water

table. The measurement just below the water table is the total stress

at that point. Since pore pressure was also measured, all three param-

eters in the effective stress equation could at least be approximated.

A quick review of the BBTS and Orlando test data, where no evidence

of liquefaction was observed, shows that this equation is approximately

satisfied by thle measurements. Figures 4.1 and 4.2 are plots of peak

pressure and stress versus scaled horizontal range for the B13TS and

Orlando tests, respectively. Actual shot data in Table 3.1 reveal that
1/3

for the BBTS at 4W , the equation is approximately satisfied in

most of the shots. However, thle data in Table 3.2 do not show similar

results at Orlando because the gages were further apart (above and

below the water table). The Orlando pore pressure and total stress data
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as a whole are not equal, thereby indicating that the effective stress

is positive. Thus, by the effective stress analysis, the data indicate

that no liquefaction occurred at either site.

Data from the Sandbar tests shown in Figure 4.3 as peak pressure

and stress versus scaled horizontal range reveals a different result.

Figure 4.3 includes data for Shots 2S-20 and 21, which did not show

signs of liquefaction. However, if these data were intentionally

omitted, the location of curves would not be changed significantly.

Thus, Figure 4.3 shows that the total stress below the water table at

2.5W 13is approximately equal to the pore pressure at that range.

This is an indication that liquefaction did occur. However, at

5W 13total stress is greater than pore pressure, which indicates that
1/3

liquefaction did not occur at a range of 5W or more. The outer

bound of liquefaction is not known for sure, but must be less than
1/3 1/3

5W , and is probably in the range of 3W

The pore pressure time histories should also give an idea of the

validity of the effective stress concept. The data shown in Figures 4.4

and 4.5 show total pressure-pore pressure time histories, and the im-

pression is the same as given by the preceeding analysis. The pore

pressure and total stress curves are very similar and for the close-in

gages, the pore pressure is approximately equal to or higher than the

total stress. The data indicate that liquefaction occurred at rela-

tively late times in the cratering process, bearing out the assumption

of a bowl crater being in existence at some early time and filled later.

4.3 REQUIRED CONDITIONS FOR SIGNIFICANT
WATER TABLE INFLUENCE ON

CRATER INC

The results of this study indicate that specific conditions must

exist in order for a water table to significantly affect cratering

results.

4.3.1 Geologic Conditions

Geologic conditions that will significantly influence cratering in
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a water table environment are noncohesive soils (as long as cohesive

layer is expected to be penetrated by crater) and water table within

1.0 WI 3" of the surface. The most significant influence comes from

noncohesive soil that can be liquefied by the blast.

4.3.2 Soil Properties

Soil properties that will influence craters formed in a near-surface

water table environment are medium to loose density, complete saturation,

grain size above silt and below coarse sand (0.15 mm < D50 < 0.4 mm,

where D50 is the mean diameter of the sand grains), and good homoge-

niety throughout the site. The presence of these properties will in-

crease the probability of the occurrence of liquefaction.

4.3.3 Charge Geometry

The most effective position for placement of charges for significant

influence on cratering in near-surface water table environment is for
1/3 1/30.2W < DOB < 1.0W . As a minimum, the charge should be fully

coupled into the soil. If possible, the charge should be in the water

or the water should be within the expected dry crater of the charge.
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CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

5.1 CONCLUSIONS

This study has confirmed that crater shapes and sizes can be sig-

nificantly affected by the presence of a near-surface water table. In

many situations the effect will be small, but in certain other situa-

tions, the crater can be radically changed because of liquefaction of

cohesionless material. For prediction purposes, the degree of satura-

tion below the water table in naturally occurring geologies is assumed

to be at or near 100 percent.

The soil properties favorable for producing liquefaction are medium

to loose soil density, sand grain size 0.15 mm <~ D50 < 0.4 mm, and

saturation > 99.5 percent.

The site conditions favorable for having proper soil properties

and producing liquefaction are a water table depth less than 1.0W 1 /3

and the homogeneous deposits of sand.

The charge geometries favorable for producing liquefaction are
1/3 1/3

0.2W < DOB < 1.0W

When all conditions are favorable for producing liquefaction, the

available data indicate that the probability of liquefaction is still

only about 50 percent because of nonhomogeneity of natural sites.

Craters in layered materials such as that at Camp Shelby (see para-

graph 2.1.4) will have unstable slopes because of the soft, wet layer

beneath the hard, dry layer. The craters may be about 10 to 15 percent

wider than conventional craters, depending on the depth of the upper

layer, because of sloughing of the crater slopes.

Craters in dense, unsaturated sand with a shallow water table are

likely to be 5 to 10 percent smaller in radius than conventional craters,

craters formed in similar soils without a distinct water table. This

is due to a tendency for the water to increase the strength of the sand

by a false cohesion, caused by surface tension.
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5.2 RECOMMENDATIONS

The following recommendations are made as a result of this study.

1. Further tests should be done on sites likely to produce lique-

fied craters (see Section 4.3). Extensive measurements should be made

of total soil stress, effective stress, and pore pressure. When all

three measurements are made, an effective stress analysis can be made

to confirm that liquefaction does in fact occur on the flat, shallow,

cratering tests.

2. Crater prediction manuals should be modified to include guid-

ance for predicting craters in loose, saturated sand, in accordance

with the results of this study. A plot of scaled apparent crater dimen-

sions versus scaled depth of burst is presented in Figure 5.1 as a guide

for making crater predictions in saturated sand. Crater dimensions can

be predicted for fine sand with curves A and C, and for medium sand with

curves B and D. Should the sand meet the criteria in Section 4.3 for

significant water table effect, radius and depth are then predicted by

curves A and E, respectively.
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APPENDIX C

APPARENT CRATER PROFILES, ORLANDO TESTS
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APPENDIX D

APPARENT CRATER PROFILES, CAMP SHELBY TESTS
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